Run quality control accuracy checks for water quality monitoring results
Source:R/qcMWRacc.R
qcMWRacc.Rd
Run quality control accuracy checks for water quality monitoring results
Usage
qcMWRacc(
res = NULL,
acc = NULL,
frecom = NULL,
fset = NULL,
runchk = TRUE,
warn = TRUE,
accchk = c("Field Blanks", "Lab Blanks", "Field Duplicates", "Lab Duplicates",
"Lab Spikes / Instrument Checks"),
suffix = "%"
)
Arguments
- res
character string of path to the results file or
data.frame
for results returned byreadMWRresults
- acc
character string of path to the data quality objectives file for accuracy or
data.frame
returned byreadMWRacc
- frecom
character string of path to the data quality objectives file for frequency and completeness or
data.frame
returned byreadMWRfrecom
- fset
optional list of inputs with elements named
res
,acc
,frecom
,sit
, orwqx
overrides the other arguments- runchk
logical to run data checks with
checkMWRresults
andcheckMWRacc
, applies only ifres
oracc
are file paths- warn
logical to return warnings to the console (default)
- accchk
character string indicating which accuracy check to return, one to any of
"Field Blanks"
,"Lab Blanks"
,"Field Duplicates"
,"Lab Duplicates"
, or"Lab Spikes / Instrument Checks"
- suffix
character string indicating suffix to append to percentage values
Value
The output shows the accuracy checks from the input files returned as a list, with each element of the list corresponding to a specific accuracy check specified with accchk
.
Details
The function can be used with inputs as paths to the relevant files or as data frames returned by readMWRresults
and readMWRacc
. For the former, the full suite of data checks can be evaluated with runkchk = T
(default) or suppressed with runchk = F
. In the latter case, downstream analyses may not work if data are formatted incorrectly. For convenience, a named list with the input arguments as paths or data frames can be passed to the fset
argument instead. See the help file for utilMWRinput
.
Note that accuracy is only evaluated on parameters in the Parameter
column in the data quality objectives accuracy file. A warning is returned if there are parameters in Parameter
in the accuracy file that are not in Characteristic Name
in the results file.
Similarly, parameters in the results file in the Characteristic Name
column that are not found in the data quality objectives accuracy file are not evaluated. A warning is returned if there are parameters in Characteristic Name
in the results file that are not in Parameter
in the accuracy file.
The data quality objectives file for frequency and completeness is used to screen parameters in the results file for inclusion in the accuracy tables. Parameters with empty values in the frequency and completeness table are not returned.
Examples
##
# using file paths
# results path
respth <- system.file('extdata/ExampleResults.xlsx', package = 'MassWateR')
# accuracy path
accpth <- system.file('extdata/ExampleDQOAccuracy.xlsx', package = 'MassWateR')
# frequency and completeness path
frecompth <- system.file('extdata/ExampleDQOFrequencyCompleteness.xlsx',
package = 'MassWateR')
qcMWRacc(res = respth, acc = accpth, frecom = frecompth)
#> Running checks on results data...
#> Checking column names... OK
#> Checking all required columns are present... OK
#> Checking valid Activity Types... OK
#> Checking Activity Start Date formats... OK
#> Checking depth data present... OK
#> Checking for non-numeric values in Activity Depth/Height Measure... OK
#> Checking Activity Depth/Height Unit... OK
#> Checking Activity Relative Depth Name formats... OK
#> Checking values in Activity Depth/Height Measure > 1 m / 3.3 ft... OK
#> Checking Characteristic Name formats... OK
#> Checking Result Values... OK
#> Checking for non-numeric values in Quantitation Limit... OK
#> Checking QC Reference Values... OK
#> Checking for missing entries for Result Unit... OK
#> Checking if more than one unit per Characteristic Name... OK
#> Checking acceptable units for each entry in Characteristic Name... OK
#>
#> All checks passed!
#> Running checks on data quality objectives for accuracy...
#> Checking column names... OK
#> Checking all required columns are present... OK
#> Checking column types... OK
#> Checking no "na" in Value Range... OK
#> Checking for text other than <=, ≤, <, >=, ≥, >, ±, %, AQL, BQL, log, or all... OK
#> Checking overlaps in Value Range... OK
#> Checking gaps in Value Range... OK
#> Checking Parameter formats... OK
#> Checking for missing entries for unit (uom)... OK
#> Checking if more than one unit (uom) per Parameter... OK
#> Checking acceptable units (uom) for each entry in Parameter... OK
#> Checking empty columns... OK
#>
#> All checks passed!
#> Running checks on data quality objectives for frequency and completeness...
#> Checking column names... OK
#> Checking all required columns are present... OK
#> Checking for non-numeric values... OK
#> Checking for values outside of 0 and 100... OK
#> Checking Parameter formats... OK
#> Checking empty columns... OK
#>
#> All checks passed!
#> $`Field Blanks`
#> # A tibble: 29 × 6
#> Parameter Date Site Result Threshold `Hit/Miss`
#> <chr> <dttm> <chr> <chr> <chr> <chr>
#> 1 Ammonia 2022-05-15 00:00:00 NA BDL 0.1 mg/l NA
#> 2 Ammonia 2022-06-12 00:00:00 NA BDL 0.1 mg/l NA
#> 3 Ammonia 2022-07-17 00:00:00 NA BDL 0.1 mg/l NA
#> 4 Ammonia 2022-07-17 00:00:00 NA BDL 0.1 mg/l NA
#> 5 Ammonia 2022-08-14 00:00:00 NA BDL 0.1 mg/l NA
#> 6 Ammonia 2022-08-14 00:00:00 NA BDL 0.1 mg/l NA
#> 7 Ammonia 2022-09-11 00:00:00 NA BDL 0.1 mg/l NA
#> 8 E.coli 2022-06-13 00:00:00 NA BDL 1 MPN/100ml NA
#> 9 E.coli 2022-07-18 00:00:00 NA BDL 1 MPN/100ml NA
#> 10 E.coli 2022-08-01 00:00:00 NA BDL 1 MPN/100ml NA
#> # ℹ 19 more rows
#>
#> $`Lab Blanks`
#> # A tibble: 38 × 6
#> Parameter Date `Sample ID` Result Threshold `Hit/Miss`
#> <chr> <dttm> <chr> <chr> <chr> <chr>
#> 1 Ammonia 2022-05-15 00:00:00 NA BDL 0.1 mg/l NA
#> 2 Ammonia 2022-06-12 00:00:00 NA BDL 0.1 mg/l NA
#> 3 Ammonia 2022-07-17 00:00:00 NA BDL 0.1 mg/l NA
#> 4 Ammonia 2022-07-17 00:00:00 NA 0.1 mg/l 0.1 mg/l MISS
#> 5 Ammonia 2022-08-14 00:00:00 NA BDL 0.1 mg/l NA
#> 6 Ammonia 2022-08-14 00:00:00 NA BDL 0.1 mg/l NA
#> 7 Ammonia 2022-09-11 00:00:00 NA BDL 0.1 mg/l NA
#> 8 Nitrate 2022-05-15 00:00:00 NA BDL 0.05 mg/l NA
#> 9 Nitrate 2022-06-12 00:00:00 NA BDL 0.05 mg/l NA
#> 10 Nitrate 2022-07-17 00:00:00 NA BDL 0.05 mg/l NA
#> # ℹ 28 more rows
#>
#> $`Field Duplicates`
#> # A tibble: 57 × 7
#> Parameter Date Site `Initial Result` `Dup. Result`
#> <chr> <dttm> <chr> <chr> <chr>
#> 1 Ammonia 2022-05-15 00:00:00 ABT-312 BDL BDL
#> 2 Ammonia 2022-05-15 00:00:00 DAN-013 BDL BDL
#> 3 Ammonia 2022-06-12 00:00:00 ABT-301 BDL 0.2 mg/l
#> 4 Ammonia 2022-09-11 00:00:00 ABT-301 BDL BDL
#> 5 DO 2022-05-15 00:00:00 ABT-026 7.58 mg/l 7.6 mg/l
#> 6 DO 2022-05-15 00:00:00 ELZ-004 5.81 mg/l 5.94 mg/l
#> 7 DO 2022-05-15 00:00:00 NSH-002 8.32 mg/l 8.33 mg/l
#> 8 DO 2022-06-12 00:00:00 ABT-062 8.56 mg/l 8.56 mg/l
#> 9 DO 2022-06-12 00:00:00 ABT-237 7.81 mg/l 8.1 mg/l
#> 10 DO 2022-06-12 00:00:00 HOP-011 7.8 mg/l 7.79 mg/l
#> # ℹ 47 more rows
#> # ℹ 2 more variables: `Diff./RPD` <chr>, `Hit/Miss` <chr>
#>
#> $`Lab Duplicates`
#> # A tibble: 91 × 7
#> Parameter Date `Sample ID` `Initial Result` `Dup. Result`
#> <chr> <dttm> <chr> <chr> <chr>
#> 1 Ammonia 2022-05-15 00:00:00 NA 0.21 mg/l 0.21 mg/l
#> 2 Ammonia 2022-05-15 00:00:00 NA BDL BDL
#> 3 Ammonia 2022-06-12 00:00:00 NA 0.1 mg/l 0.1 mg/l
#> 4 Ammonia 2022-06-12 00:00:00 NA 0.19 mg/l 0.19 mg/l
#> 5 Ammonia 2022-07-17 00:00:00 NA BDL BDL
#> 6 Ammonia 2022-07-17 00:00:00 NA BDL BDL
#> 7 Ammonia 2022-08-14 00:00:00 NA BDL BDL
#> 8 Ammonia 2022-08-14 00:00:00 NA BDL BDL
#> 9 Ammonia 2022-09-11 00:00:00 NA BDL BDL
#> 10 Ammonia 2022-09-11 00:00:00 NA BDL BDL
#> # ℹ 81 more rows
#> # ℹ 2 more variables: `Diff./RPD` <chr>, `Hit/Miss` <chr>
#>
#> $`Lab Spikes / Instrument Checks`
#> # A tibble: 94 × 7
#> Parameter Date `Sample ID` `Spike/Standard` Result
#> <chr> <dttm> <chr> <chr> <chr>
#> 1 Ammonia 2022-05-15 00:00:00 NA 100 % recovery 86 % recovery
#> 2 Ammonia 2022-06-12 00:00:00 NA 100 % recovery 94 % recovery
#> 3 Ammonia 2022-06-12 00:00:00 NA 100 % recovery 106 % recovery
#> 4 Ammonia 2022-07-17 00:00:00 NA 100 % recovery 92 % recovery
#> 5 Ammonia 2022-07-17 00:00:00 NA 100 % recovery 108 % recovery
#> 6 Ammonia 2022-08-14 00:00:00 NA 100 % recovery 96 % recovery
#> 7 Ammonia 2022-08-14 00:00:00 NA 100 % recovery 102 % recovery
#> 8 Ammonia 2022-09-11 00:00:00 NA 100 % recovery 88 % recovery
#> 9 Ammonia 2022-09-11 00:00:00 NA 100 % recovery 89 % recovery
#> 10 Nitrate 2022-05-15 00:00:00 NA 100 % recovery 99 % recovery
#> # ℹ 84 more rows
#> # ℹ 2 more variables: `Diff./Accuracy` <chr>, `Hit/Miss` <chr>
#>